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[1] The study demonstrates the use of ground-penetrating radar (GPR) tomographic
data for estimating sediment geochemical parameters using data collected at the
Department of Energy South Oyster bacterial transport site in Virginia. By exploiting the
site-specific mutual dependence of GPR attenuation and extractable Fe(II) and Fe(III)
concentrations on lithofacies, we develop a statistical model in which lithofacies and
Fe(II) and Fe(III) concentrations at each pixel between the boreholes are considered as
random variables. The unknown variables are estimated by conditioning to the colocated
GPR data and the lithofacies measurements along boreholes using a Markov Chain Monte
Carlo method. Cross-validation results show that the geophysical data, constrained by
lithofacies, have the potential for providing high-resolution, multidimensional information
on extractable Fe(II) and Fe(III) concentrations at the South Oyster site. INDEX TERMS:
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1. Introduction

[2] Geochemical characterization is important for devel-
oping efficient bioremediation approaches for cleaning up
metal and radionuclide contaminants in aquifers. Many
studies have shown that both in situ physical and chemical
heterogeneity control field-scale bacterial movement
[DeFlaun et al., 1997; Chapelle, 2001; Mailloux et al.,
2003]. For example, for those bacteria with low or neutral
surface charges, the adhesion of bacteria to sediment is
primarily determined by physical heterogeneity, specifically
by grain size and pore throat size distributions [Dong et al.,
2002]. However, for those bacterial strains bearing high
negative surface charges and traveling through the hetero-
geneous subsurface, chemical heterogeneity becomes im-
portant due to surface electrostatic interactions [Scholl and
Harvey, 1992; Mills et al., 1994; Knapp et al., 2002].
[3] Traditional methods for characterizing geochemical

heterogeneity typically involve drilling a borehole, and
either retrieving a soil sample for laboratory analysis or

collecting borehole logs within the hole. Although these
methods are deemed necessary for collecting data to under-
stand field-scale bacterial transport processes, it is prohib-
itive to use them intensively for collecting dense data to
estimate geochemical parameters in a multidimensional
domain. As a result, borehole sampling methods should
be used together with cost effective and less invasive
techniques, such as geophysical methods, for improved
geochemical characterization.
[4] In our previous study, we have successfully estimated

the high-resolution spatial distribution of hydraulic conduc-
tivity at the Department of Energy South Oyster bacterial
transport site in Virginia using geophysical data [Chen et al.,
2001; Hubbard et al., 2001]. Comparison of field tracer
experiment measurements and numerical modeling predic-
tions suggests that the estimated hydraulic conductivity
values, obtained using geophysical tomographic approaches,
provide information at a resolution that greatly improves the
prediction of field-scale solute transport [Scheibe and Chien,
2003] and helps to improve the understanding of bacterial
transport and attachment [Mailloux et al., 2003].
[5] In this study, we explore the use of the same type

of geophysical data sets for characterizing geochemical
heterogeneity at the South Oyster bacterial transport site.
We choose to estimate the spatial distribution of extractable
Fe(II) and Fe(III) concentrations because many studies have
shown that metal oxyhydroxide coatings (iron, aluminum,
and manganese) have the potential to exert a strong
influence on bacterial transport in aquifers [Scholl and
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Harvey, 1992; DeFlaun et al., 1997; Fuller et al., 2000;
Knapp et al., 2002; Mailloux et al., 2003]. At the South
Oyster site, iron coatings have been recognized as one of the
most important factors for understanding bacterial transport
[DeFlaun et al., 1997; Dong et al., 2002; Mailloux et al.,
2003].
[6] Our goal in this study is to demonstrate the use of

ground-penetrating radar (GPR) tomographic data for
estimating solid phase Fe(II) and Fe(III) concentrations
using a Markov Chain Monte Carlo (MCMC) method. We
strive to provide high-resolution information on extractable
Fe(II) and Fe(III) concentrations on a two-dimensional
domain for other studies. Although we focus herein on
the estimates of iron distribution, the methodology that we
present can be used to estimate other geochemical param-
eters, given the availability of geophysical data and
relationships that link the geophysical and geochemical
attributes.
[7] The remainder of this paper is organized as follows.

Section 2 describes site information and available data, and
sections 3 and 4 describe the development of the statistical
estimation method. Estimation results and cross validation
of the method are given in section 5.

2. Site Information and Data

2.1. Site Information

[8] The South Oyster site is located on the southern
Delmarva Peninsula, which is situated on the eastern coast
of the United States between the Chesapeake Bay and
Atlantic Ocean (Figure 1). The surficial unconfined aquifer
underlying the study area consists of unlithified to weakly
cemented, well-sorted, medium- to fine-grained sands and
pebbly sands, and the water table is located �2 m below
the ground surface. A field-scale experiment within the
uncontaminated aquifer at the site was undertaken by a
multidisciplinary research team to evaluate the importance
of chemical and physical heterogeneity in controlling
bacteria transport at the site [DeFlaun et al., 2001; Johnson
et al., 2001]. Two focus areas exist within the South Oyster
site: the Narrow Channel Focus Area and the South Oyster
Focus Area (SOFA). Forced gradient chemical and bacte-
rial tracer test experiments were performed at both focus
areas.
[9] This study focuses on data collected within a saturated

aquifer at a site located �15 m along geological strike from
the SOFA transport site (Figure 1). Our goal is to investigate
the spatial heterogeneity of geochemical parameters as an
analogue to the immediately adjacent SOFA site. The
available data include the laboratory measurements of
physical, geological, and geochemical parameters from
the cores retrieved from wells D1, D2, and D3. The
samples were taken between depths of 2.4 m and 8.7 m
below the ground surface with a sampling interval of
0.15 m to 0.30 m [Johnson et al., 2001]. The data also
include high-resolution ground-penetrating radar (GPR)
and seismic tomograms acquired along the cross sections
between wells D1-D2 and D2-D3 (Figure 1). We have
performed multivariate data analysis for all the data sets and
found lithofacies and GPR attenuation to be most informa-
tive for estimating extractable Fe(II) and Fe(III) concen-
trations. As such, in the following, we only describe the

lithofacies, GPR attenuation, and solid phase Fe(II) and
Fe(III) data, and explore their cross correlations.

2.2. Data Analysis

2.2.1. Lithofacies
[10] Borehole lithofacies categorization was performed

for the study during the logging and core sampling process
based on the visual grain size estimation using a comparator
chart and on the soil color and texture description. In the
original data, four lithofacies categories were identified:
peat, mud, muddy sand, and sand. On the basis of cluster
analysis of physical properties, we reduce the classifications
from four to two categories, by grouping peat and mud
together, and referring to it as mud, and by grouping muddy
sand and sand together, and referring to it as sand.
[11] The spatial structure of lithofacies has been investi-

gated using variograms, which are defined as the average
squared difference of a quantity at two locations as a
function of the measurement separation distance [Rubin,
2003]. We perform variogram analysis along the vertical
direction by first computing the experimental variogram
using the coded lithofacies data (sand = 1 and mud = 0)
collected from wells D1, D2, and D3, and then fitting it
using an exponential model with an integral scale of 0.5 m.
Similarly, we attempt to fit a model to the experimental
variogram in the horizontal direction, but with data from
just three wells, no model could be reliably fit to the
horizontal variogram due to sparse sample density in that
direction. In this study, however, we assume an anisotropy
ratio of 5, borrowed from the nearby Narrow Channel Focus
Area [Hubbard et al., 2001], and use an integral scale of
2.5 m in the horizontal direction.
2.2.2. GPR Attenuation
[12] GPR is a geophysical tool that has become increas-

ingly popular as researchers across a variety of disciplines
strive to better understand near-surface conditions. GPR uses
electromagnetic energy at frequencies of 50–1500 MHz to
probe the subsurface. At the frequencies used and under the
low-loss conditions, the electromagnetic signals propagate
primarily as waves, and the GPR attributes are functions of
dielectric constant and electrical conductivity of the medium
[Davis and Annan, 1989]. Radar velocities are influenced
by the dielectric constant, which is sensitive to water
content and porosity, and thus have been used for mapping
soil water content in unsaturated systems [Hubbard et al.,
1997; Binley and Beven, 2003] and hydraulic conductivity
in saturated systems [Chen et al., 2001; Hubbard et al.,
2001]. Radar amplitudes (or attenuation), however, are
influenced by both the dielectric constant and the electric
conductivity of the medium [Davis and Annan, 1989]. In
saturated aquifers, such as the one considered here, radar
attenuation usually is dominated by electrical conductivity,
and high electrical conductivity often leads to high radar
attenuation. Since fine-grained soils (such as clay and silt)
typically have much higher electrical conductivity (2–
1000 mS/m for clay and 1–100 mS/m for silt) than that
of coarse-grained soils such as sand (0.1–1 mS/m), higher
radar attenuation is often associated with high clay content
and silt fraction. Although the salinity of pore fluid may
also influence GPR attenuation, it does not appear to be a
factor at this site because the overall salinity of the pore
fluid is very low (less than 0.03 wt%). Consequently, we
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hypothesize that both GPR attenuation and geochemical
parameters are predominantly influenced by lithology, and
focus herein on the use of GPR attenuation to estimate
geochemical parameters by exploring the lithology link.
[13] GPR tomographic data were collected along the

cross sections between wells D1 and D2 and between wells
D2 and D3, using borehole antennas having a central
frequency of 100 MHz. A typical cross-hole tomographic
geometry consists of two vertical boreholes separated by an
interwell region of interest. Direct energy from a transmit-
ting antenna in one borehole is recorded by the receiving
antenna located in the other borehole. By moving the
transmitting and receiving antennas in the boreholes, many
ray paths can be recorded, which can be inverted to provide
a tomographic image of the region between the boreholes
[Peterson et al., 1985]. The recorded data include the direct
electromagnetic wave travel time from the transmitter to the
receiver passing through the cross-hole region and the
amplitude of the direct arrivals. After dividing the interwell
area into a grid of pixels (0.25 m � 0.25 m), an inversion
algorithm was used to transform the recorded travel time
and amplitude information into estimates of the GPR
velocity and attenuation at each pixel following Peterson
[2001]. Figure 2a shows a contoured GPR attenuation
tomogram along the cross section between wells D1 and
D3. GPR attenuation data ‘‘overlap’’ with borehole data at
or near the borehole locations. These colocated data are

used to develop site-specific relations between geophysical
attributes and geochemical parameters. The developed rela-
tionships are then used in conjunction with the GPR
tomographic data (Figure 2a) to extrapolate borehole geo-
chemical measurements into the interwell areas.
[14] Figure 3 shows the relationship between the sand and

mud lithofacies and the natural logarithmic GPR attenua-
tion. As expected from the previous discussions, the GPR
amplitudes are more attenuated when passing through mud
than through sand. On the basis of data collected at the three
wells, the mean logarithmic GPR attenuation of sand is
�0.74 1/m with a standard deviation of 0.23 1/m, while the
mean logarithmic GPR attenuation of mud is �0.33 1/m
with a standard deviation of 0.36 1/m.
2.2.3. Extractable Fe(II)
[15] Extractable Fe(II) concentrations were measured by

leaching triplicate 0.5–1.0 g subsamples, obtained from
each depth interval of wells D1, D2, and D3, with 0.5 M
HCl for one hour. The Fe(II) versus Fe(III) content of the
extracts was determined using Ferrozine [Roden and Lovely,
1993]. The exact nature of the Fe(II)-bearing phases leached
by the 0.5 M HCl is unknown, but may generally include
Fe(II) from native iron-bearing minerals in the formation
(e.g., carbonates or silicates), as well as Fe(II) phases
produced from bacterial Fe(III) oxide reduction (e.g., sid-
erite or Fe(II) sorbed to residual Fe(III) oxides or other
mineral surfaces).

    

 

 

 

Figure 1. Locations of the South Oyster bacterial transport site and our study area (D-site). Well bore
data were collected at wells D1, D2, and D3, and ground-penetrating radar (GPR) attenuation tomograms
were collected along transects D1-D2 and D2-D3.
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[16] Figure 4 shows the histograms of the natural
logarithmic extractable Fe(II) concentrations for sand and
mud based on data collected at wells D1, D2, and D3. The
figure suggests that the distributions of logarithmic Fe(II)
concentrations are symmetrical around the corresponding
means for both sand and mud. However, the logarithmic
Fe(II) concentrations of sand have a much larger range
(from �4 to 4) than those of mud (from 2 to 4). The
logarithmic Fe(II) concentrations also depend on lithofa-
cies; mud has much higher extractable Fe(II) concentra-
tions compared to sand. The mean natural logarithmic
Fe(II) concentration of mud is 3.12 mmol/cc with a
standard deviation of 0.58 mmol/cc, whereas the mean
natural logarithmic Fe(II) concentration of sand is only
0.25 mmol/cc with a standard deviation of 1.66 mmol/cc.
The logarithmic Fe(II) concentration distributions as a
function of lithofacies are reasonable, as Fe(II) is usually
sequestered in fine-grain sediments such as silt and clay

[Chapelle, 2001], and our mud lithofacies include both silt
and clay components.
[17] As both logarithmic Fe(II) concentrations and loga-

rithmic GPR attenuation display a correlation with lithofa-
cies, we have physical justification for investigating the link
between Fe(II) concentrations and GPR attenuation. The
connection, however, may be affected by organic matter,
grain size, porosity, and other physical parameters. Figure 5
shows a cross plot of logarithmic Fe(II) concentrations
versus logarithmic GPR attenuation based on data at wells
D1, D2, and D3, where the circles represent sand and the
triangles represent mud. This figure reveals that for both
sand and mud, logarithmic Fe(II) concentrations linearly
increase with increasing logarithmic GPR attenuation. For
mud, however, the increase is not as apparent as for sand.
2.2.4. Extractable Fe(III)
[18] The concentrations of extractable Fe(III), including

amorphous and crystalline Fe(III) oxides, were determined

Figure 2. (a) GPR attenuation. (b) Estimated mean natural logarithmic Fe(II) concentrations.
(c) Frequency of sand (a frequency of 0.0 implies that lithofacies is mud, whereas a frequency of 1.0
implies that lithofacies is sand). (d) Estimated mean natural logarithmic Fe(III) concentrations. At wells
D1, D2, and D3 of Figures 2b–2d the measured values rather than the estimated values of Fe(II),
frequency of sand, and Fe(III) are used.
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using a citrate-dithionite (CD) reagent (pH 4.8) [Canfield,
1989]. The 0.5 M HCl extractable Fe(II) content of parallel
sediment extracts (see above) was subtracted from total CD
extractable Fe in order to estimate Fe(III) abundance, as the
CD reagent typically recovers the majority of solid phase
Fe(II) compounds. The total Fe generally increases with
depth in the sediment as illustrated by Wildung et al. [2004].
However, no detailed information is available about the
depositional or postdepositional processes responsible for
the observed Fe distribution.
[19] Figure 6 shows the histograms of natural logarith-

mic Fe(III) concentrations for sand and mud. The loga-
rithmic Fe(III) concentrations of mud are symmetric
around its mean and the logarithmic Fe(III) concentrations
of sand are slightly skewed toward the larger values.
Although the mean values of the logarithmic Fe(III)
concentrations for sand (2.12 mmol/cc) and for mud
(�0.60 mmol/cc) are quite different, their ranges overlap
considerably. In addition, the logarithmic Fe(III) concen-
trations have weak linear correlations with both logarith-
mic GPR attenuation (R2 = 0.05) and logarithmic Fe(II)
concentrations (R2 = 0.15), but have a relatively good
correlation with depth (R2 = 0.37).

3. Statistical Model

[20] This section describes the statistical model for esti-
mating the spatial distribution of Fe(II) and Fe(III) concen-
trations along the cross section between wells D1 and D3.
Within the statistical framework, unknown Fe(II) and
Fe(III) concentrations and lithofacies at each location
between the wells are considered as random variables,
which are fully characterized by the joint conditional
probability function given GPR tomographic data and
borehole lithofacies logs. Estimation of those variables
from the joint probability function is obtained using a
Markov Chain Monte Carlo approach, which will be
described in the next section.

3.1. Model Setup

[21] The developed statistical model is intended to meet
conditions that are specific to our study site, although its

underlying concept is quite general and can be applied to
other sites. Figure 7 shows a discretization of the cross
section (12 m � 6 m) between wells D1 and D3. There are a
total number of 1225 pixels, each of which has dimensions
of 0.25 m � 0.25 m. Lithofacies and Fe(II) and Fe(III)
concentrations are known at pixels along wells D1, D2, and
D3, but are unknown at pixels located between the wells.
GPR attenuation is considered to be known at all locations
along the two-dimensional transect. Our goal is to estimate
all the unknown parameters given data available at the three
wells and along the cross section.
[22] The estimation problem can be addressed in a

stochastic framework using a joint conditional probability
function. Let Li be the indicator random variable represent-
ing lithofacies at pixel i, 1 for sand and 0 for mud, i2N,
where N is the index set of all pixels where lithofacies and
Fe(II) and Fe(III) concentrations are unknown. Let Xi and Yi
denote the unknown logarithmic Fe(II) and Fe(III) concen-
trations at pixel i. For convenience, we shall refer toFigure 3. Box plot of natural logarithmic GPR attenuation.

Figure 4. Histograms of natural logarithmic Fe(II) con-
centrations of (a) sand and (b) mud as a function of
lithofacies.
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probability functions and probability density functions as
probability distributions in the later text. Let ai denote the
inverted logarithmic GPR attenuation at pixel i and lw
denote the known lithofacies at the borehole pixels.
Following the convention suggested by Gelfand and Smith
[1990], we use square brackets to denote probability
distributions. Consequently, the joint conditional distribu-
tion is given by

Lif g; Xif g; Yif gj aif g; lwf g½ 	; i 2 N ð1Þ

where { } denotes a set that includes all possible values of
the variable. Our objective is to obtain the marginal
distribution functions of lithofacies and logarithmic Fe(II)
and Fe(III) concentrations at each pixel from the joint
conditional distribution.

3.2. Local Conditional Distribution

[23] We can simplify equation (1) by considering local
dependence between logarithmic GPR attenuation, lithofa-
cies, and logarithmic Fe(II) and Fe(III) concentrations,
using data collected at boreholes. We use the stepwise
deletion technique [Chen et al., 2001] to obtain the best
regression models for logarithmic Fe(II) and Fe(III) con-
centration estimation. We also fit the logarithmic GPR
attenuation as a linear function of the lithofacies indicator.
Figure 8 is a graphical model showing the local condi-
tional relationships among lithofacies, logarithmic GPR
attenuation, and logarithmic Fe(II) and Fe(III) concentra-
tions. We found that logarithmic Fe(II) concentrations
depend on the colocated lithofacies and logarithmic GPR
attenuation, and logarithmic Fe(III) concentrations depend
on the colocated logarithmic Fe(II) concentrations and
depth. On the basis of data analysis, we assume each

of the local conditional distribution to be Gaussian as
follows:

aijLi½ 	 � Normal u1 þ u2Li; t1ð Þ; ð2Þ

Xijai; Li½ 	 � Normal v1 þ v2Li þ v3ai þ v4Liai; t2ð Þ; ð3Þ

YijXi½ 	 � Normal r1 þ r2Xi þ r3di; t3ð Þ; ð4Þ

where di is depth at pixel i, u1, u2, v1, v2, v3, v4, r1, r2, and r3
are regression coefficients, and t1, t2, and t3 are the inverse
variances of the conditional distributions of ai, Xi, and Yi,
respectively. The coefficients and inverse variances,
obtained from data analysis, are given in Table 1. The
goodness of each regression model can be evaluated using
the multiple correlation coefficients given in the table.
[24] In equations (3) and (4), we assume that loga-

rithmic Fe(II) and Fe(III) concentrations are spatially
independent given the other colocated parameters. The
spatial continuity of Fe(II) and Fe(III) concentrations are
preserved to some point through their links to lithofacies
and GPR attenuation. This assumption may lead to
slight discontinuity of logarithmic Fe(II) and Fe(III)
concentration estimation around boreholes. To consider
logarithmic Fe(II) and Fe(III) concentrations as spatial
variables, however, we need to develop reliable cross
variograms, which is not possible using data at only three
boreholes.

3.3. Joint Conditional Distribution

[25] We can expand equation (1) into several terms using
Bayes’s theorem [Bernardo and Smith, 1994]. On the basis

Figure 5. Cross plot of natural logarithmic Fe(II) concentrations versus natural logarithmic GPR
attenuation, where the circles represent sand samples and the solid triangles represent mud samples.
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of the dependence relationships shown in Figure 8, the
equation can be expanded as follows:

Lif g; Xif g; Yif gj aif g; lwf g½ 	 / Yif gj Xif g½ 	 Xif gj aif g; Lif g½ 	
aif gj Lif g½ 	 Lif g; lwf g½ 	; ð5Þ

where ‘‘/’’ represents ‘‘proportional to,’’ which ignores the
normalizing constant at the right side of equation (5). By
assuming that the values of logarithmic GPR attenuation and
logarithmic Fe(II) and Fe(III) concentrations at each pixel
are conditionally independent of the ones at other pixels, we
obtain the following form of the joint distribution:

Lif g; Xif g; Yif gj aif g; lwf g½ 	 / Lif g; lwf g½ 	Y
i2N

YijXi½ 	 Xijai; Li½ 	 aijLi½ 	f g: ð6Þ

Equation (6) can be determined by incorporating the local
conditional distributions given in equations (2)–(4).

4. MCMC Sampling Method

[26] This section outlines the method for obtaining esti-
mates of Fe(II) and Fe(III) concentrations from the joint
conditional distribution shown in equation (6). As conven-
tional analytical approaches are not feasible due to the large
number of unknown variables involved, we instead use a
Markov Chain Monte Carlo method, which has recently
emerged as a powerful approach for solving complex statis-
tical problems that involve a large number of dependent
random variables. The MCMC method provides an efficient
way to draw samples of unknown variables from their joint
distributions by running a constructed Markov chain [Gilks
et al., 1996]. Using those samples, we can obtain the mean,
variance, predictive intervals, and even probability function
for each variable. Several applications of MCMCmethods to
hydrology have been found, including those documented by
Bosch [1999], Bates and Campbell [2001], and Michalak
and Kitanidis [2003].
[27] We estimate Fe(II) and Fe(III) concentrations by

following four basic steps: (1) derive the conditional distri-
bution for each unknown variable given all the data and all

Figure 6. Histograms of natural logarithmic Fe(III)
concentrations of (a) sand and (b) mud.

Figure 7. Discretization of the cross section between wells D1 and D3. The total number of pixels is
25 � 49 = 1225.
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other variables, which is referred to as the full conditional
distribution of the variable; (2) sequentially draw samples
from each of the conditional distributions; (3) monitor
convergence using the method developed by Gelman and
Rubin [1992]; (4) make inferences about each variable using
the generated samples. The first three steps of the process
are described below, and the final stage is given in section 5.

4.1. Deriving Full Conditional Distributions

[28] Full conditional distributions play a prominent role
in applications of MCMC methods [Gilks et al., 1996].
They are typically not the same as the local conditional
distributions that are conditioned to all the data but only
subsets of all other variables. However, we can derive full
conditional distributions by using the local conditional
distributions. Theoretically, the full conditional distribution
of each variable is proportional to the joint conditional
distribution shown in equation (6). As MCMC methods
need no information about normalizing constants, we can
obtain the full conditional distribution of each variable by
omitting the terms at the right side of equation (6) that are
not directly related to the variable.
4.1.1. Full Conditional Probability Density Function
of Yi
[29] Let [Yij�] denote the full conditional probability

density function (pdf) of Yi given all the data and other
variables. After omitting all the terms in equation (6) that
are not directly related to Yi, we can obtain

Yij�½ 	 / YijXi½ 	: ð7Þ

This is the same as the local conditional pdf of Yi given Xi

that was shown in equation (4).

4.1.2. Full Conditional Probability Density Function
of Xi

[30] Similarly, by omitting all the terms in equation (6)
that are not directly related to Xi, we can obtain the full
conditional pdf of Xi as follows:

Xij�½ 	 / YijXi½ 	 Xijai; Li½ 	: ð8Þ

By substituting [Xijai, Li] and [YijXi] with equations (3) and
(4), respectively, and after some derivations (Appendix A),
we can obtain

Xij�½ 	 � Normal

� t2 v1 þ v2Li þ v3ai þ v4Liaið Þ þ r2t3 Yi � r1 � r3dið Þ
t2 þ r22t3

; t2 þ r22t3

� �
:

ð9Þ

4.1.3. Full Conditional Probability Function of Li

[31] The MCMC method allows us to consider lithofacies
as a spatially correlated random variable. As a result, we can
incorporate spatial correlation and borehole lithofacies
measurements into the estimation model. Similar to the
derivations of [Yij�] and [Xij�], we omit those terms in
equation (6) that are not directly related to Li and obtain

Lij�½ 	 / aijLi½ 	 Xijai; Li½ 	 Lij Lj; j 6¼ i
� �

; lwf g
� �

; ð10Þ

where {Lj, j 6¼ i} is the set including lithofacies at all pixels
except pixel i. It is convenient and reasonable to assume that
lithofacies Li depends only on the lithofacies at its adjacent
pixels [Chen and Rubin, 2003]. Let set Ai be the index set of
the adjacent pixels of pixel i. For those pixels not near
boreholes, the conditional probability of Li does not depend
on borehole lithofacies measurements, and thus it is given
by

Lij Lj; j 6¼ i
� �

; lwf g
� �

¼ LijLj; j 2 Ai

� �
� Bernoulli pi*ð Þ; ð11Þ

where p*i is the probability of lithofacies being sand given
the lithofacies at its surrounding pixels, which is obtained
using indicator kriging [Rubin, 2003] (Appendix B).
Although for those pixels near boreholes, the conditional
probability of Li also depends on the borehole lithofacies
measurements {lw}, we can use a similar method as
described in Appendix B to obtain probability p*i.
[32] By substituting [aijLi] and [Xijai, Li] with equa-

tions (2) and (3), respectively, and after some simplifica-

Figure 8. Graphical model showing the local dependence
relationships among lithofacies, GPR attenuation, depth,
and Fe(II) and Fe(III) concentrations. The rectangles
represent given data, and the ellipses represent unknown
variables.

Table 1. Coefficients of Cross Correlations Among Lithofacies, Geochemical Parameters, and Geophysical Data

Corresponding to Equations (2)–(4)

Models Coefficients

Logarithmic GPR attenuation u1 = �0.3332, u2 = �0.4110, t1 = 15.58
Versus lithofacies R2 = 0.26

Logarithmic Fe(II) concentration v1 = 3.4128, v2 = 0.3085, v3 = 0.8796
Versus lithofacies and logarithmic GPR attenuation v4 = 3.7870, t2 = 0.70, R2 = 0.60

Logarithmic Fe(III) concentration r1 = �0.8813, r2 = �0.5910, r3 = 1.0026
Versus depth and logarithmic Fe(II) concentration t3 = 0.45, R2 = 0.60
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tions (Appendix C), we can obtain the full conditional
probability of lithofacies as follows:

Lij�½ 	 � Bernoulli
pi*pi

1� pi*þ pi*pi

� �
; ð12Þ

where

pi ¼ expft1u2 ai � u1 � 0:5u2ð Þ þ t2 v2 þ v4aið Þ
Xi � v1 � 0:5v2 � v3ai � 0:5v4aið Þg:

4.2. Sampling Full Conditional Distributions

[33] The relationships shown in equations (7), (9), and
(12) represent the full conditional distributions of all vari-
ables of interest. The second step of the MCMC method is
to sequentially draw samples from those distributions. There
are two major algorithms that can be used to draw samples
from full conditional distributions: the Gibbs sampler
[Geman and Geman, 1984] and the Metropolis-Hastings
method [Metropolis et al., 1953; Hastings, 1970]. As the
full conditional distributions of Xi and Yi are Gaussian and
the full conditional distribution of Li is Bernoulli, which are
easily sampled, we use in this study the Gibbs sampler.
The main steps are as follows: (1) for each i2N, randomly
assign 0 or 1 to Li and refer to it as Li

(0), assign a real
number to Xi and refer to it as Xi

(0), and assign a real
number to Yi and refer to it as Yi

(0). Let k = 1. (2) For each
randomly selected i2N, draw a sample from the Gaussian
distribution [Yij�] (equation (4)) given Xi

(k�1) and refer to
it as Yi

(k). (3) For each randomly selected i2N, draw a
sample from the Gaussian distribution [Xij�] (equation (9))
given Yi

(k) and Li
(k�1), and refer to it as Xi

(k). (4) For each
i2N, draw a sample from the Bernoulli distribution [Lij�]
(equation (12)) given Xi

(k), {Lj
(k), j = 1, 2, � � �, i � 1}, and

{Lj
(k�1), j = i + 1, � � �, n} and refer to it as Li

(k). (5) Let
k = k + 1. If k > m, where m is the maximum number
of iterations allowed, stop; otherwise, go to step 2.

4.3. Monitoring Convergence of the Sampling

[34] In the third step of the MCMC method, our goal is to
determine the number of iterations that we need to obtain
samples for inferences using the Gibbs sampler. Samples
obtained from the preceding algorithm may not be the
samples of their marginal conditional distributions. How-
ever, theoretically, after a sufficiently long run (for example
t iterations), referred to as burn-in [Gilks et al., 1996],
samples {Xi

(k), Yi
(k), Li

(k): k = t + 1, � � �, m, i2N}
obtained from the algorithm are approximately samples
from their corresponding true marginal conditional distri-
butions [Gelfand and Smith, 1990]. In addition, as indi-
cated by the ergodic theorem [Gilks et al., 1996], the
mean of any measurable function of those variables
obtained using the generated samples after discarding
burn-in samples asymptotically converges to its true expec-
tation as m ! +1.
[35] There are many methods for monitoring conver-

gence and finding the burn-in, such as Gelman and Rubin
[1992], Geweke [1992], and Raftery and Lewis [1992]
methods. The most often used method is the Gelman and
Rubin [1992] method. The method first entails running
several Markov chains with very different initial values,

followed by calculation of a criterion, referred to as the
scale reduction score based on the multiple Markov chains
[Gelman and Rubin, 1992]. If the scale reduction score is
less than 1.2, the Markov chain is considered to be
converged; otherwise, more runs are needed. Using the
preceding convergence diagnostics method, we found that
a burn-in of 400 realizations is enough for all the
unknown variables in this study. After the burn-in stage,
we continue to run the chain for another 2000 runs, and
use all those samples to make inferences about the
unknown variables. The total computing time for running
the 2400 iterations is less than ten minutes on a Pentium-III
personal computer.

5. Results and Discussion

[36] At the final stage of the MCMC method, we sum-
marize the results of Fe(II) and Fe(III) concentration esti-
mation. We first present the two-dimensional images of the
mean logarithmic Fe(II) and Fe(III) concentrations, obtained
using the previous MCMC method. We then show the
results of cross-validation analysis that demonstrate the
effectiveness of the developed statistical model. Finally,
we provide a short discussion of our methodology.

5.1. Fe(II) and Fe(III) Estimation

[37] We have estimated the probability density functions
of extractable Fe(II) and Fe(III) concentrations along the
cross section between wells D1 and D3 using the method
developed in sections 3 and 4, based on the lithofacies
and Fe(II) and Fe(III) concentration data at wells D1, D2,
and D3 and the GPR attenuation data along the cross
sections from wells D1 to D3. Figure 2b shows the
estimated mean logarithmic Fe(II) concentrations along
the two-dimensional transect. The figure provides detailed
spatial information about extractable Fe(II) concentrations
on the cross section, which could not be obtained from
borehole measurements only. The estimated spatial pat-
terns of Fe(II) concentrations are similar to those of GPR
attenuation (Figure 2a) because of the good correspon-
dence of Fe(II) concentrations with GPR attenuation as
shown in Figure 5. Figure 2d shows the two-dimensional
image of logarithmic Fe(III) concentrations, which is
much different from the GPR attenuation image. Compar-
ison of Figures 2c and 2d reveals that extractable Fe(III)
concentrations are higher beneath the mud layer than
above the layer.
[38] As the byproduct of the Fe(II) and Fe(III) concen-

tration estimation, we have also obtained the probability of
sand occurring at each pixel on the cross section between
wells D1 and D3 (Figure 2c). Lithofacies on the cross
sections between wells D1 and D3 correspond to GPR
attenuation very well, with sand having lower attenuation
and mud having higher attenuation. Figure 2c also suggests
that there is a mud layer in the middle of the cross section,
which passes through the three wells.
[39] Slight discontinuity of estimated logarithmic Fe(II)

and Fe(III) are observed around three well bores in
Figures 2b and 2d. This is caused by our assumptions about
the statistical model that Fe(II) and Fe(III) concentrations are
spatially independent given the colocated GPR and lithofa-
cies data. The model can be improved using a more complex
method, such as the one used by Bosch et al. [2001] in
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estimation of lithological structure from geophysical gravity
and magnetic data.

5.2. Cross Validation

[40] Cross validation has been performed based on
data at wells D1, D2, and D3 to assess the accuracy
of our estimation method. We consider each well in turn
as a testing well and the other two wells as training
wells. As was previously performed using the entire data
set, in this exercise, we first derive cross correlations
among various types of properties and spatial correlation
of lithofacies from only the training data set. We then
estimate logarithmic Fe(II) and Fe(III) concentrations at
the testing locations using data at the training wells and

GPR attenuation data along the transect from wells D1
to D3. By comparing the estimated results with their
corresponding true values at the testing well, we evaluate
the effectiveness of the developed model for Fe(II) and
Fe(III) concentration estimation.
[41] Figure 9 compares the estimated mean logarithmic

Fe(II) concentrations (solid lines), obtained during this
cross-validation exercise, with their corresponding core
measurements (circles with solid lines) at testing wells
D1, D2, and D3, respectively. The dashed lines indicate
the 95% predictive intervals. The figure suggests that the
developed model is effective for logarithmic Fe(II) concen-
tration estimation. As shown in the figure, the mean
estimates of logarithmic Fe(II) concentrations at well D1

Figure 9. Comparisons of the true logarithmic Fe(II) concentrations and their corresponding estimated
values obtained using GPR attenuation during the cross-validation exercise. The circles with solid lines
represent the core measurements, the solid lines represent the mean estimates, and the dashed lines
represent the 95% predictive intervals.

Figure 10. Comparisons of the true logarithmic Fe(II) concentrations and their corresponding estimated
values obtained without using GPR attenuation during the cross-validation exercise. The circles with
solid lines represent the core measurements, the solid lines represent the mean estimates, and the dashed
lines represent the 95% predictive intervals.
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closely follow the true measurements of logarithmic Fe(II)
concentrations, and the mean estimates of logarithmic Fe(II)
concentrations at testing well D2 has a good agreement
with the true values. Although the estimated results of
logarithmic Fe(II) concentrations at testing well D3 are
not as good as at other testing wells, most measurements
are still within the 95% predictive intervals of the estimated
values.
[42] Figure 10 shows the estimated mean logarithmic

Fe(II) concentrations obtained without using GPR attenua-
tion data in order to show the improvement offered by the
GPR data. In this case, again, the solid lines represent the
estimated values and the circles with solid lines represent
the true values at the testing wells. Although the three wells
in the cross section are separated by only 6 m, the estimated

results without using GPR attenuation are much worse than
those obtained with the use of GPR attenuation. This is
especially apparent at testing well D1. The mean estimates
of Fe(II) concentrations are smooth, and the 95% predictive
intervals are larger than those of the model including GPR
attenuation.
[43] Figure 11 shows the estimated mean logarithmic

Fe(III) concentrations and their 95% predictive intervals at
each testing well obtained during the cross validation. Again,
Fe(III) concentration estimates at each testing well are
obtained using only data at the other two training wells,
along with the GPR attenuation, and a comparison of the
estimates with the true data is given to assess the validity of
our developed model. We found that the measured logarith-
mic Fe(III) concentrations follow the trends of the estimated

Figure 11. Comparisons of the true logarithmic Fe(III) concentrations and their corresponding
estimated values obtained using GPR attenuation during the cross-validation exercise. The circles with
solid lines represent the core measurements, the solid lines represent the mean estimates, and the dashed
lines represent the 95% predictive intervals.

Figure 12. Comparisons of the true logarithmic Fe(III) concentrations and their corresponding
estimated values obtained without using GPR attenuation during the cross-validation exercise. The circles
with solid lines represent the core measurements, the solid lines represent the mean estimates, and the
dashed lines represent the 95% predictive intervals.
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mean, and that most of the estimates are within the 95%
predictive intervals. Similar to Figure 10, Figure 12 shows
the estimated mean logarithmic Fe(III) concentrations
obtained without using GPR attenuation data. It is clear
that GPR attenuation provides information for improving
estimation of Fe(III) concentrations, especially for testing
well D1.

5.3. Discussion

[44] We have demonstrated the use of geophysical
tomographic data for estimating geochemical heterogene-
ity based on a field data set using a statistical model.
The integration of cross-hole geophysical data and bore-
hole measurements has the potential for providing high-
resolution information about the spatial distribution of
extractable Fe(II) and Fe(III) concentrations. The estimated
data, together with other information, may be useful for
estimating microbial iron reduction potential [Murray et
al., 2001], and for aiding in estimation of bacterial
transport parameters [Fuller et al., 2000]. Although the
statistical model is developed according to the data col-
lected from a specific site for estimating solid Fe(II) and
Fe(III) concentrations, the idea that geochemical parame-
ters and geophysical attributes can be linked through their
mutual dependence on physical and lithologic properties
should be applicable for estimation of other geophysical
parameters.
[45] We have shown that the developed method is

effective for estimating geochemical parameters using the
cross-validation method, but have not shown how the
estimated results can improve the prediction of bacterial
transport. Ideally, to evaluate the usefulness of the esti-
mated geochemical heterogeneity for predicting bacterial
transport, we should compare the prediction of bacterial
transport using the estimated geochemical parameters to
the one without using the geochemical data through a
simulation model, and compare both the predictions with
the results of bacterial transport experiments. However,
modeling bacterial transport in subsurface itself is a topic
of current research [e.g., Murphy and Ginn, 2000; Sun et
al., 2001; Bhattacharjee et al., 2002; Loveland et al.,
2003]. The research requires a multidisciplinary effort,
for example, understanding biogeochemical processes and
the coupling of the processes with physical flow and
transport, and mapping the spatial variability of field-scale
physical and chemical properties in subsurface [Smith et
al., 1991; Cozzarelli et al., 1999]. Although our study is
part of the effort, it is not our intention to quantitatively
show the usefulness of the estimated Fe(II) and Fe(III)
concentrations for estimating bacterial transport parameters
in the study.
[46] Our statistical model is developed based on regres-

sion analysis of multidimensional data at the South
Oyster site. Similar to other estimation methods, the
quality of the estimate is constrained by the quality and
quantity of available direct measurements. In this study,
we can only divide lithofacies into two statistically
significant categories (sand and mud) based on analysis
of the data we have. Within each category, Fe(II) and
Fe(III) concentrations range over several orders of mag-
nitudes, which result in associated uncertainty. However,
our approach is general and not limited to two lithofacies.
If we could collect more or higher-quality data that allow

us to define more lithofacies, we could possibly obtain
better estimates of Fe(II) and Fe(III) concentrations using
the method.

Appendix A: Derivation of [Xij�j�]
[47] By substituting equations (3) and (4) into equation (8)

and omitting all terms that are not directly related to Xi, we
obtain [Xij�] as follows:

Xij�½ 	 / exp � t3
2

Yi � r1 � r2Xi � r3dið Þ2
n o

� exp � t2
2

Xi � v1 � v2Li � v3ai � v4Liaið Þ2
n o

¼ exp � t3
2

r2Xi � Yi þ r1 þ r3dið Þ2
n o

� exp � t2
2

Xi � v1 � v2Li � v3ai � v4Liaið Þ2
n o

/ exp



� t2 þ r22t3

2
X 2
i þ t2 v1 þ v2Li þ v3ai þ v4Liaið ÞXi

þ t3r2 Yi � r1 � r3dið ÞXi

�
� Normal

t2 v1 þ v2Li þ v3ai þ v4Liaið Þ þ r2t3 Yi � r1 � r3dið Þ
t2 þ r22t3

; t2 þ r22t3

� �
;

ðA1Þ

where v1, v2, v3, v4, r1, r2, r3 are regression coefficients, t2
and t3 are the inverse variances, and Yi, Li, di, and ai are the
logarithmic Fe(III) concentration, lithofacies, depth, and
logarithmic GPR attenuation at pixel i, respectively.

Appendix B: Indicator Kriging

[48] Let set Ai be the index set of the adjacent pixels of
pixel i. Let ps be the unconditional probability of observing
sand at any pixel. The simple kriging mean mpi of observing
sand is given by

mpi ¼ ps þ
X
j2Ai

lj Lj � ps
 �

: ðB1Þ

The coefficients lj ( j2Ai) are determined by

X
j2Ai

ljCkj ¼ Cki; k 2 Ai; ðB2Þ

where Ckj and Cki are the lithofacies covariances between
pixel k and pixel j and between pixel k and pixel i,
respectively. Both covariances are given by

Cij ¼ s2 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx

Ih

� �2

þDz

Iv

�2
s8<

:
9=
;; ðB3Þ

where s2 is a constant, which does not affect estimation of
the coefficients, and Dx and Dz are the distances along
horizontal and vertical directions between pixels i and j.
Iv and Ih are the integral lengths along vertical and
horizontal directions and derived from borehole data as
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explained in section 2. To ensure mpi2 [0, 1], we let pi* =
min{1, max{0, mpi}}.

Appendix C: Derivation of [Lij�j�]
[49] By substituting equations (2) and (3) into equation

(10) and using the identity Li
2 = Li, we obtain the full

conditional probability of lithofacies as follows:

Lij�½ 	 � Bernoulli pð Þ; ðC1Þ

where

p / aijLi½ 	 Xijai; Li½ 	 LijLj; j 2 Ai

� �
/ expf�0:5t1 ai � u1 � u2Lið Þ2� 0:5t2ðXi � v1 � v2Li � v3ai

� v4LiaiÞ2g Lipi*þ 1� Lið Þ 1� pi*ð Þf g:
/ expft1u2Li ai � u1 � 0:5u2ð Þ þ t2 v2 þ v4aið ÞLiðXi � v1

� 0:5v2 � v3ai � 0:5v4aiÞg Lipi*þ 1� Lið Þ 1� pi*ð Þf g: ðC2Þ

Normalization yields

p ¼ pi*pi

1� pi*þ pi*pi
; ðC3Þ

where

pi ¼ expft1u2 ai � u1 � 0:5u2ð Þ þ t2 v2 þ v4aið Þ
Xi � v1 � 0:5v2 � v3ai � 0:5v4aið Þg: ðC4Þ
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